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ABSTRACT

With ever shrinking feature sizes in semiconduetod photonics industry, the demand and the chadeffior
optical modelling in terms of accuracy has incrdaskamatically over the last decade. Rigorous modal
diffraction methods such as the RCWA, the Diffef@ntnethod or the C-method provide sufficient aecyr
however, they are rather costly particularly for g&terns.

In this paper, we are suggesting an approach whibhsed on the so-called Rayleigh hypothesis.bEsée idea
of this method is to extend the expansion of tleetebmagnetic field components into Rayleigh modsile
the grating grooves as opposed to the RCWA whareesipansion within the slices is done in so-cabBeagg
modes. Therefore, the Rayleigh-Fourier method do¢seed a diagonalization for the decoupling efriiodes.

It requires only the formation of an interface s#ion matrix, the elements of which can be comgute
analytically. As a consequence, it is very fashidot 2D as well as for 3D.

Here, we discuss the details of the method and $twowit can be combined with other modal methods ane
framework. The application limits are discussedeims of the corrugation depth of the grating,shape of the
grating profile, the pitch and the refraction indentrast. Surprisingly, the method can be appi@deyond
the Rayleigh limit in a sort of semi-convergentineg when implemented and utilized carefully. Dueitto
speed, the method might be an appropriate choicerdal time regression particularly for only slight
corrugated multilayer stacks.
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1. Introduction

During the last decade, several rigorous methods haen developed and matured for the accurate utatign

of the diffraction response of gratings. Here, foeus was mainly on modal methods where the field
components are developed in Fourier series. The umgersal modal method is the RCWA where a given
profile is decomposed in thin slices. Then, théraition problem for each slice is solved by meaina Fourier
transformation the refraction index distributionthim the slices in horizontal direction and couglithe
electromagnetic fields in vertical direction by 8fipg the boundary conditions. Alternatively, theumdary
conditions can also be applied in horizontal ditettresulting in the so-called classical modal rodth.
Furthermore, the slicing can be replaced by a nigaleintegration in vertical direction which is liged in the
D-method*. Eventually, one can introduce a new curvi-lineaordinate system which follows the interface
between two materials or the surface of the gratififis is realized in the Chandezon or Coordinate
transformation method (C-method. Last but not least, different methods can be iaggayer wise to take
advantage of the individual strengths of the methad effectively adapt it to the corresponding tay&n
example is given iAlwhere the RCWA and C-method are combined in a HyBrRCWA.

All this methods rely on the scattering matrix cling * of the fields in vertical direction to insure alsie
convergence and to avoid ill-posedness of the sacgamatrix inversions. The individual methods exhi
advantages and disadvantages. For example, the R&MWs convergence problems for high contrast nadder
and small sidewall angles in TM polarization. Oe thther hand, the C-method cannot deal with vértica
overhanging profiles. However, all the methods h@wveommon that the resulting differential equat&ystem
usually requires the solution of an Eigen systemd & is a well known matter of fact that Eigenv&osk scale
with the third power of the matrix size in terms afmputation costs. Therefore, there is a strorgireldor
methods that are faster but still accurate enough.

In practical applications, the interfaces to be eiled are often only slightly corrugated. Exames defects in
EUV masks or diffracting laser mirrors. In this papwe show that the Rayleigh-Fourier method isdzal

substitute for only slightly corrugated gratingsofdover, it is shown by means of numerical expemisné¢hat
this is true even far beyond the validity of theyRah criterion.



The paper is organised as follows. In chapterthiory of the Rayleigh-Fourier method is outlin€lis is
followed by section 3 which contains all the nuroatiexperiments to explore the validity range @f thethod
for different conditions, e.g., corrugation degihich and refraction index for a single interfalreaddition,
multiple interfaces are discussed. A brief sumntanycludes the paper in section 4.

2. Theory

The Rayleigh method is based on the so-called Rewleypothesis. It states that the Rayleigh exmamsihich
is usually only valid outside the grating regioadion a in figure 1) can be extented into the geafregion b).
According to the fundamentals of light scatteringdry?, this can be done as long as:

h E:o&9<% 1)

holds where h is the grating heigBtis the angle of incidence aids the wavelength. This would mean that the
grating height has to be below 62 nm when illumigatwith 500 nm wavelength under normal incidence.
Moreover, the criterion neither takes the profitiaccount nor worries about the correlation leragtpitch for

a periodic pattern, respectively.

In general, there are three different methods bamedhe Rayleigh hypothesis — the point matching or
collocation method, the Rayleigh Fourier (RF) mettamd the Least Square Approximation Method (LSAM)
9101 n all these methods, the fields on both sidethefinterface are matched to each other in a fipeay.
Unfortunately, all the methods presented in therditure cannot easily deal with multilayer stackees the
matrices are build in a way to match the boundamyddions on the interface. For the same reasan RR
cannot easily combined with other diffraction metb@uch as the RCWA.

Therefore, we derive a technique based on the Rayleourier approach where the propagation across a
interface separating two different materials candbee by a single matrix which can easily includedhe
scattering matrix algorithm. The basic principletioé Rayleigh-Fourier method consists in the dguakent of
the electromagnetic fields into Fourier modes dral rhatching of these modes at the interface. Toehd, a
local coordinate system is introduced on the iatefin order to enable the direct application ef loundary
conditions of the tangential fields. The correspogdtheory is discussed in detail 1A Here, only a short
summary is given.

The situation is depicted in figure 1.

Region a

Fig. 1: Grating setup and coordinate system

We assume that the interface is given by the fancfi= f(x,z). Then, a local coordinate system gldhe
interface is introduced by means of:

n=e,-grad, f (x,2)
tl=ey xn (2)
t,=nxt
First, the fields are propagated from theaves in the homogeneous area to the tangentids faa the interface
by means of:
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Here, T is a propagation matrix that propagatesi¢he from the reference planetg the interface f(x,z).
Furthermore[ is a matrix that transforms thewaves into the tangential fields and D is a rotatimatrix that
transforms the global tangential fields into thedlotangential fields as defined by (2). Moreoeis given by
the Bloch theorenf = 3, + mA/pitch (for 1D grating) and,is a vector in the xz-plane (=®r 1D).

The same procedure can be done when approachimglieother side of the interface. By a formal nsian
one can write:

e E,
2
€ 1 = o B - L (L H,
= — Oo—m@ D 4
N (Zﬂjjdm[é H, (4)
h_ Yis1 Etz f(x,2)

Merging (3) and (4) together into one expressiaulte in an expression that connectsthgaves on either
side of the interface:
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Finally, the transition is realized by means of Jhmatrix. Basically, the J-matrix consists of feubmatrices
that describe the polarisation coupling cases,TE~TE, TM-TM, TE-TM and TM- TE.

Beside a prefactor, the elements of the J-matexgaren by the diffraction integral:
xi= £ [Jar gt ™
F (2]_[)2 & Il
The hats for andf3 mean that it is formed by the sum or differencéhefoc andp on either side of the interface
(for detail sed?). Thea itself is given by the dispersion relatiqﬂﬁ;/&’—ﬁ2 .

The diffraction integral has an analytical solutifam sinusoidal and piecewise linear profiles. Hiere, the
population of the J-matrix can be done very fast@spared to the Eigen solve of the most otherroige
methods.

Finally, the coupling of the Rayleigh-Fourier medhwith the RCWA is straightforward having the J mat

available. Assuming for example an interface whlttalculated with the C-method and which is emieeldd
between two RCWA-slices (1 and 2). Then, ttwaves on the front and back side of this interfaaa be

connected by applying the boundary conditions via:
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Of course, the waves have to be sorted for causg-response waves, and the various matrices habe to
coupled in a recurrent way following the rulestod 5-matrix coupling.

3. Numerical Results

In this section, the validity range of the Rayleigburier implementation shall be investigated. tFigsatings
made from purely dielectric materials shall be rdgd. The refraction index is 1.5. Because theagnys are
losless, the analysis can be based on the eneitgyiam, i.e., the deviation of the sum of all pagating
diffraction orders from one. In this paper, onlgusoidal profiles are considered. Furthermore, aek lat two
different grating periods — a small period in thage of the light wavelength and a larger one (athbda).

The results for the single sinusoidal grating drews in figure 2. The order truncation#§, +10 and+20, the
grating pitch is 0.5 microns and 5 microns, respelt The wavelength is 0.4 microns and the ligicidence is
normal.
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Figure 2: Energy error for a sinusoidal dielectric gratingt polarisations (TE and TM) are shown for
different number of diffraction orders§, £10 and+20) and the grating pitch is 0.5 pum and 5 pum (nthike
_LP). The incident light is normal and has a wangtk of 0.4 pum.

Obviously, the convergence increases with highdelonumber as expected. Moreover, TE shows slidiatier
convergence than TM. And the convergence behawoslightly worse for the large period grating. Hower,
the error is still in the range of 2dor an aspect ratio of 0.2. And this means thé¢imgadepth is 1 micron for a
grating pitch of 5 microns. Related to the wavetharihis gives a ratio of 2.5 ! This value is a npié of the
Rayleigh criterion of 0.125. In conclusion, it tarout that the aspect ratio plays a more essanol@lthan the
grating depth to wavelength ratio in terms of thawergence range of the Rayleigh Fourier method.

The next numerical example is a sinusoidal gratiagle from Silicon. The complex refraction inderis 5.57

+j0.387 at 400 nm wavelength. Since the enerdgrion cannot be applied anymore in this caserehbelts are
compared with the RCWA (23 slices and 46 slicespeetively) and the C-method. A relative errorakulated
as err = (RF-RCWA)/RCWA. The results are showrigare 3.
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Figure 3: Relative error for a sinusoidal dielectric gratifigne reference is the RCWA with 23 slices, RCWA
with 46 slices and C-method. Both polarisations @nd TM) are shown. The incident light is normad &as a
wavelength of 0.4 pum.

It becomes evident that the Rayleigh-Fourier rescdtrrelate much better with the results from thméZhod.
The relative error is below T0Ofor an aspect ratio up to almost 0.2. This comesis to a grating depth to
wavelength ratio of 0.25 which is still the doulmiethe Rayleigh criterion. The worse correlationtioé RF-
results with those obtained from the RCWA is du¢htoknown issues of the RCWA itself caused bystieng
and the incorrect application of the Fourier faizmtion for profiles that deviate from binary

In the third numerical example, a quick look shmdlthrown on the application of the Rayleigh-Founeethod
for multilayer systems. Here, a sinusoidal gratsgonsidered which is coated with another mateeislilting in
a multilayer grating with two parallel sinusoidatérfaces. Again, a purely dielectric grating igaeled with a
substrate index of 1.8 and a layer index of 1.5.
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Figure 3: Energy error for a coated sinusoidal dielectridigta(Nsupstrae= 1.8, Roating= 1.5) versus the aspect
ratio (grating depth to pitch). The coating layeickness is equal to the corrugation depth. Thérgaitch is
0.5 um. The incident light is normal and has a Wength of 0.4 pm.

Again, the convergence is quite good for apecbsdbelow 0.2 for TE-polarisation and slightly wofs&8 for
TM-polarisation.



4. Conclusion and Outlook

The paper has shown how to implement the Rayle@iri€r method in a scattering matrix algorithm.ttis
way it can be combined with the RCWA and the C-métinto a hybrid frame. Then, slightly corrugated
interfaces can be very rapidly solved with the Rmi-Fourier whereas interfaces that do not hawpeshngles
well below 90 degrees can be solved with the C-owettll other interfaces including overhanging [liexf as
well as volume scatterers can be treated by meahs ®RCWA.

Moreover, it was shown by means of numerical téssthe Rayleigh-Fourier method remains valid Inglythe

Rayleigh criterion, particularly for gratings witlirge pitch. It turned out that the aspect rate,, igrating depth
to pitch is much more essential as a validity dote than the depth to wavelength ratio. Theselteswld more
or less for both dielectric gratings as well agiggs made from Silicon.

Further work should focus on other surface profdash as triangular and binary profiles. Besidess, planned
to combine the Rayleigh-Fourier method with the REW order to model multilayer gratings. Also, the

extension of the method to 3D should be taken auosideration if the previous tests can be accangdl
successfully.
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