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ABSTRACT 
 

With ever shrinking feature sizes in semiconductor and photonics industry, the demand and the challenges for 
optical modelling in terms of accuracy has increased dramatically over the last decade. Rigorous modal 
diffraction methods such as the RCWA, the Differential method or the C-method provide sufficient accuracy, 
however, they are rather costly particularly for 3D patterns. 
 
In this paper, we are suggesting an approach which is based on the so-called Rayleigh hypothesis. The basic idea 
of this method is to extend the expansion of the electromagnetic field components into Rayleigh modes inside 
the grating grooves as opposed to the RCWA where the expansion within the slices is done in so-called Bragg 
modes. Therefore, the Rayleigh-Fourier method does not need a diagonalization for the decoupling of the modes. 
It requires only the formation of an interface transition matrix, the elements of which can be computed 
analytically. As a consequence, it is very fast both for 2D as well as for 3D. 
 
Here, we discuss the details of the method and show how it can be combined with other modal methods into one 
framework. The application limits are discussed in terms of the corrugation depth of the grating, the shape of the 
grating profile, the pitch and the refraction index contrast. Surprisingly, the method can be applied far beyond 
the Rayleigh limit in a sort of semi-convergent regime when implemented and utilized carefully. Due to its 
speed, the method might be an appropriate choice for real time regression particularly for only slightly 
corrugated multilayer stacks. 
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1. Introduction 

During the last decade, several rigorous methods have been developed and matured for the accurate computation 
of the diffraction response of gratings. Here, the focus was mainly on modal methods where the field 
components are developed in Fourier series. The most universal modal method is the RCWA 1,2 where a given 
profile is decomposed in thin slices. Then, the diffraction problem for each slice is solved by means of a Fourier 
transformation the refraction index distribution within the slices in horizontal direction and coupling the 
electromagnetic fields in vertical direction by applying the boundary conditions. Alternatively, the boundary 
conditions can also be applied in horizontal direction resulting in the so-called classical modal method 3. 
Furthermore, the slicing can be replaced by a numerical integration in vertical direction which is utilized in the 
D-method 4. Eventually, one can introduce a new curvi-linear coordinate system which follows the interface 
between two materials or the surface of the grating. This is realized in the Chandezon or Coordinate 
transformation method (C-method) 5,6. Last but not least, different methods can be applied layer wise to take 
advantage of the individual strengths of the method and effectively adapt it to the corresponding layer. An 
example is given in 6 where the RCWA and C-method are combined in a hybrid C-RCWA. 
 
All this methods rely on the scattering matrix coupling 7 of the fields in vertical direction to insure a stable 
convergence and to avoid ill-posedness of the necessary matrix inversions. The individual methods exhibit 
advantages and disadvantages. For example, the RCWA shows convergence problems for high contrast materials 
and small sidewall angles in TM polarization. On the other hand, the C-method cannot deal with vertical or 
overhanging profiles. However, all the methods have in common that the resulting differential equation system 
usually requires the solution of an Eigen system. And it is a well known matter of fact that Eigen solvers scale 
with the third power of the matrix size in terms of computation costs. Therefore, there is a strong desire for 
methods that are faster but still accurate enough. 
 
In practical applications, the interfaces to be modelled are often only slightly corrugated. Examples are defects in 
EUV masks or diffracting laser mirrors. In this paper, we show that the Rayleigh-Fourier method is an ideal 
substitute for only slightly corrugated gratings. Moreover, it is shown by means of numerical experiments that 
this is true even far beyond the validity of the Rayleigh criterion. 
 



The paper is organised as follows. In chapter 2, the theory of the Rayleigh-Fourier method is outlined. This is 
followed by section 3 which contains all the numerical experiments to explore the validity range of the method 
for different conditions, e.g., corrugation depth, pitch and refraction index for a single interface. In addition, 
multiple interfaces are discussed. A brief summary concludes the paper in section 4. 
 
2. Theory 

The Rayleigh method is based on the so-called Rayleigh hypothesis. It states that the Rayleigh expansion which 
is usually only valid outside the grating region (region a in figure 1) can be extented into the grating (region b). 
According to the fundamentals of light scattering theory 8, this can be done as long as: 

8
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λϑ <⋅h       (1) 

 
holds where h is the grating height, θ is the angle of incidence and λ is the wavelength. This would mean that the 
grating height has to be below 62 nm when illuminating with 500 nm wavelength under normal incidence. 
Moreover, the criterion neither takes the profile into account nor worries about the correlation length or pitch for 
a periodic pattern, respectively. 
 
In general, there are three different methods based on the Rayleigh hypothesis – the point matching or 
collocation method, the Rayleigh Fourier (RF) method and the Least Square Approximation Method (LSAM) 
9,10,11. In all these methods, the fields on both sides of the interface are matched to each other in a specific way. 
Unfortunately, all the methods presented in the literature cannot easily deal with multilayer stacks since the 
matrices are build in a way to match the boundary conditions on the interface. For the same reason, the RF 
cannot easily combined with other diffraction methods such as the RCWA. 
 
Therefore, we derive a technique based on the Rayleigh Fourier approach where the propagation across an 
interface separating two different materials can be done by a single matrix which can easily included in the 
scattering matrix algorithm. The basic principle of the Rayleigh-Fourier method consists in the development of 
the electromagnetic fields into Fourier modes and the matching of these modes at the interface. To this end, a 
local coordinate system is introduced on the interface in order to enable the direct application of the boundary 
conditions of the tangential fields. The corresponding theory is discussed in detail in 12. Here, only a short 
summary is given. 
 
The situation is depicted in figure 1.  
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Fig. 1:  Grating setup and coordinate system 

 
We assume that the interface is given by the function f = f(x,z). Then, a local coordinate system along the 
interface is introduced by means of: 
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First, the fields are propagated from the ±waves in the homogeneous area to the tangential fields at the interface 
by means of: 
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Here, T is a propagation matrix that propagates the field from the reference plane yi to the interface f(x,z). 

Furthermore, Γ is a matrix that transforms the ± waves into the tangential fields and D is a rotation matrix that 
transforms the global tangential fields into the local tangential fields as defined by (2). Moreover, β is given by 
the Bloch theorem: β = β0 + mλ/pitch (for 1D grating) and r|| is a vector in the xz-plane (=ex for 1D). 
 
The same procedure can be done when approaching from the other side of the interface. By a formal inversion  
one can write:  
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Merging (3) and (4) together into one expression results in an expression that connects the ± waves on either 
side of the interface: 
 

ii yy
h

h

e

e

Jd

h

h

e

e

∫




















⋅⋅=





















−

+

−

+

−

+

−

+

+

εε
ββ

β ',

,'

1

     (5) 

 
 
with: 
 

|||| '111
||

2
',

,' 2
1 riri eTDDTerdJ ⋅−−−−⋅− ⋅⋅Γ⋅⋅⋅Γ⋅⋅⋅






= ∫
ββεε

ββ π
   (6) 

Finally, the transition is realized by means of the J-matrix. Basically, the J-matrix consists of four submatrices 
that describe the polarisation coupling cases, i.e., TE→TE, TM→TM, TE→TM and TM→TE.  
 
Beside a prefactor, the elements of the J-matrix are given by the diffraction integral: 
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The hats for α and β mean that it is formed by the sum or difference of the α and β on either side of the interface 

(for detail see 12). The α itself is given by the dispersion relation 2βεα −= .  

 
The diffraction integral has an analytical solution for sinusoidal and piecewise linear profiles. Therefore, the 
population of the J-matrix can be done very fast as compared to the Eigen solve of the most other rigorous 
methods. 
 
Finally, the coupling of the Rayleigh-Fourier method with the RCWA is straightforward having the J matrix 
available. Assuming for example an interface which is calculated with the C-method and which is embedded 
between two RCWA-slices (1 and 2). Then, the ±waves on the front and back side of this interface can be 
connected by applying the boundary conditions via: 
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Of course, the waves have to be sorted for cause- and response waves, and the various matrices have to be 
coupled in a recurrent way following the rules of the s-matrix coupling. 

 

3. Numerical Results 

In this section, the validity range of the Rayleigh Fourier implementation shall be investigated. First, gratings 
made from purely dielectric materials shall be regarded. The refraction index is 1.5. Because these gratings are 
losless, the analysis can be based on the energy criterion, i.e., the deviation of the sum of all propagating 
diffraction orders from one. In this paper, only sinusoidal profiles are considered. Furthermore, we look at two 
different grating periods – a small period in the range of the light wavelength and a larger one (12x lambda). 
 
The results for the single sinusoidal grating are shown in figure 2. The order truncation is ±5, ±10 and ±20, the 
grating pitch is 0.5 microns and 5 microns, respectively. The wavelength is 0.4 microns and the light incidence is 
normal. 
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Figure 2: Energy error for a sinusoidal dielectric grating. Both polarisations (TE and TM) are shown for 
different number of diffraction orders (±5, ±10 and ±20) and the grating pitch is 0.5 µm and 5 µm (marked by 
_LP). The incident light is normal and has a wavelength of 0.4 µm. 
 
Obviously, the convergence increases with higher order number as expected. Moreover, TE shows slightly better 
convergence than TM. And the convergence behaviour is slightly worse for the large period grating. However, 
the error is still in the range of 10-5 for an aspect ratio of 0.2. And this means the grating depth is 1 micron for a 
grating pitch of 5 microns. Related to the wavelength this gives a ratio of 2.5 ! This value is a multiple of the 
Rayleigh criterion of 0.125. In conclusion, it turns out that the aspect ratio plays a more essential role than the 
grating depth to wavelength ratio in terms of the convergence range of the Rayleigh Fourier method. 
 
The next numerical example is a sinusoidal grating made from Silicon. The complex refraction index is n = 5.57 
+ j0.387 at 400 nm wavelength. Since the energy criterion cannot be applied anymore in this case, the results are 
compared with the RCWA (23 slices and 46 slices, respectively) and the C-method. A relative error is calculated 
as err = (RF-RCWA)/RCWA. The results are shown in figure 3. 
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Figure 3: Relative error for a sinusoidal dielectric grating. The reference is the RCWA with 23 slices, RCWA 
with 46 slices and C-method. Both polarisations (TE and TM) are shown. The incident light is normal and has a 
wavelength of 0.4 µm. 
 
It becomes evident that the Rayleigh-Fourier results correlate much better with the results from the C-method. 
The relative error is below 10-6 for an aspect ratio up to almost 0.2. This corresponds to a grating depth to 
wavelength ratio of 0.25 which is still the double of the Rayleigh criterion. The worse correlation of the RF-
results with those obtained from the RCWA is due to the known issues of the RCWA itself caused by the slicing 
and the incorrect application of the Fourier factorization for profiles that deviate from binary 13. 
 
In the third numerical example, a quick look shall be thrown on the application of the Rayleigh-Fourier method 
for multilayer systems. Here, a sinusoidal grating is considered which is coated with another material resulting in 
a multilayer grating with two parallel sinusoidal interfaces. Again, a purely dielectric grating is regarded with a 
substrate index of 1.8 and a layer index of 1.5.  
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Figure 3: Energy error for a coated sinusoidal dielectric grating (nsubstrate = 1.8, ncoating = 1.5) versus the aspect 
ratio (grating depth to pitch). The coating layer thickness is equal to the corrugation depth. The grating pitch is 
0.5 µm. The incident light is normal and has a wavelength of 0.4 µm. 
 
Again, the convergence is quite good for apect ratios below 0.2 for TE-polarisation and slightly worse 0.18 for 
TM-polarisation.  



4. Conclusion and Outlook 

The paper has shown how to implement the Rayleigh-Fourier method in a scattering matrix algorithm. In this 
way it can be combined with the RCWA and the C-method into a hybrid frame. Then, slightly corrugated 
interfaces can be very rapidly solved with the Rayleigh-Fourier whereas interfaces that do not have slope angles 
well below 90 degrees can be solved with the C-method. All other interfaces including overhanging profiles as 
well as volume scatterers can be treated by means of the RCWA. 
 
Moreover, it was shown by means of numerical tests that the Rayleigh-Fourier method remains valid beyond the 
Rayleigh criterion, particularly for gratings with large pitch. It turned out that the aspect ratio, i.e., grating depth 
to pitch is much more essential as a validity criterion than the depth to wavelength ratio. These results hold more 
or less for both dielectric gratings as well as gratings made from Silicon.  
 
Further work should focus on other surface profiles such as triangular and binary profiles. Besides, it is planned 
to combine the Rayleigh-Fourier method with the RCWA in order to model multilayer gratings. Also, the 
extension of the method to 3D should be taken into consideration if the previous tests can be accomplished 
successfully. 
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